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DYNAMIC FRACTURE ANALYSIS OF NOTCHED BEND SPECIMENS
by

S. Mal l~ , A.S. Kobayashi** , and F.J. Loss***

A dynamic finite element code was used to determine dynamic initiation
fracture toughness , K Id, in 25.4 mm (1 in.) thick notched bend specimens of
A533 B steel and a 15.9 mm (5/8 in.) thick dynamic tear (DT) specimen of 6061
aluminum alloy . These specimen types can reflect varying dynamic fracture
response due to differences in test temperature , specimen geometry and material
as well as notch tip sharpness. Measured load-time histories were applied to
the tup as modeled by finite elements and the dynamic stress intensity factor
was computed by a calibrated COD procedure . Dynamic stress intensity factors
were also computed by the ASTM E-399 procedure using a load based on local
dynamic strain measurements and a static K-calibration .

Reasonable agreements between measured and computed dynamic strains in
the vicinity of the crack tip verified the accuracy of the dynamic finite
element model . The attendant agreement between measured versus computed time-
varying dynami c stress intensity factors also verified , for the firs t time ,
the applicability of the ASTM E-399 procedure for computing dynamic initiation
fracture toughness , KId on the basis of local dynamic strain measurements .

INTRODUCTION

The dynamic tear (DT) specimen is a simple dynamically loaded three-point •~

bend specimen which was developed by the Naval Research Laboratory (NRL)[1 ,2,3]
to characterize the fracture resistance of ductile ma terial by an energy criterion.
As a result of extensive experimenta l investigatio n , empirical correlations were
also made between the DI energy (DIE) and the static fracture toughness , KIC, for
high-strength steels that are not strain-rate sensitive [4]. Research is also
under way to establish a correlation between the DIE and dynamic initiation
fracture toughness , KId. In this regards, an empirical correlation between DIE
and KId at the nil -ductility transition (NOT) temperature has been obtained and
the size effect on DIE has been established [3]. In a parallel research effort
to the above, theoretical and experimental analyses were made on the dynamic
responses of DT specimen and the associated loading system [5] in order to estab-
lish the relationship between hammer force and specimen bend i ng moment during
impact. With these studies as a basis , later NRL research [6] focused on an
analysis of forces and bending moments in an ASTM E-399 type bend specimen [7].
The objective of the latter program was to establish an experimenta l method for
KId measurements . The results of the preceeding programs showed that the instan-
taneous tup load at fracture cannot be directly related to the KId of the material .
Furthermore, it was concluded that the measurement of Kid required that the specimen
be instrumented to determine the local dynamic state of stress surrounding the crack
tip at the time of fracture.
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As another parallel effort in analyzing the dynamic response of a DI specimen,
one of the writers and his col l eague initiated a dynamic photoelastic study [8] of
the DI specimen [9]. More recently, two of the writers extended this study and
used a combined experimental and numerical procedure, i.e. dynamic photoelasticity
and dynamic finite element analysis , to determine the dynamic fracture responses
of DI specimens mach i ned from brittle and ductile photoelastic polymers , i.e.
9.5 m (3/8 in.) thick Homalite—lOO plates [10] and 3.2 mm (1/8 in.) thick poly—
carbonate plates [11], respectively. Despite its thinness and pronounced ductilit y
under static loading , the polycarbonate DI specimens exhibited cleavage fracture
thus providtng a phenomenlogical model of the dynamic response in a low-carbon
steel bend specimen in the linear elastic regime , i.e. near the NOT temprature.
The results of the above combined dynamic photoelastic and finite element analyses
showed that:

(1) KId is approximately equal to KIC of the brittle Homalite-lOO specimens .
(2) KId is approximately equal to 65 percent of the pop-in K IC of the

ductile polycarbonate spec imen.
(3) The kinetic energy at complete specimen fracture respresents a

significant portion of the total externa l work imparted to both
brittle and ductile specimens .

(4) KId can be determined from the dynamic strain measured near the crack
tip for both brittle and ductile specimens .

The fourth conclusion resulted from a comparison of KId obtained directly
from dynamic photoelasticity and dynamic finite element analysis wi th that obtained
by a dynamic finitie element model i ng of the experimenta l procedure where K1~ is
computed , followi ng Loss [6], from a local dynamic strain value using a static
calibration of the three-point bend specimen . The success of Loss ’ procedure in
determining KId in photoelastic DI specimens led to the present investigation for
verifying this approach when used to determine KId in actual steel and aluminum
bend specimens . In our analysis of these opaque specimens , photoelasticity was
replaced by dynamic finite element ana l ysis. The latter was used to determine the
local transient state of stress surround ing the crack tip as wel l to determi ne
KId directly. Results of this investigation are summarized here .

KId EXPERI MENTAL PROCEDUR E

The NRL procedure [6] for experimental determination of KId hinges on the
correct interpretation of the specimen fracture behavior utilizing the dynamic
response of a strain gage mounted near the crack tip as shown in Figure 1. A
strain gage In this location Is employed to define the dynamic bending moment or
equivalent mid -span load on the specimen . Prior to impact loading of the specimen,
the strain gage output Is statically calibrated . This calibration has provided
linear correspondence with the mid-span load for ~ 1 where

and 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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The primary assumption in this procedure is that the ASTM E-399 relationship
[7] for the stress intensity factor K1, which has been derived for static loading ,
is also applicable to dynamic impact loading provided that correct value for
dynamic specimen l oad is employed . A calibrated strain gage close to the crack
tip is believed to be an accura te indicator of mid -span load and yet not reflect
the confusing inertial loads that would be sensed by a transducer tnounted on the
tup.

The experimenta l method relies on a sudden (pop—in) crack extension that
enables KId to be readily computed from the strain gage vs time record . The
pop— in is accompanied by a region of cleavage on the fracture surface. A test
is therefore considered meaningful by this method only if a macroscopic examin-
ation of the fracture surface indicates the absence of ductile crack extension
adjoining the fatigue precrack of the specimen. In other words , any ductile
tearing that precedes the cleavage pop-in would indicate that crack initiation
began in a stable manner , i.e., with rising load . Thus , the occurrence of a
pop-in later in time can no longer be equated with the initiation of crack
extension.

The above procedure is empirical and therefore requires a firm analytical
basis before it can be accepted as a viable experimental tool . For example , if
the strain gage is not properly located , its output may sense strains due to
inertial effects or reflected stress waves that preclude accurate measurement
of Kj. Consequently, a dynamic fini te element analysis was performed to validate
the procedure . In the finite element analysis , K1 was computed as a function of
time on the basis of an i nput l oading taken from the measured record of tup l oad
vs time . The validity of the experimental procedure is assessed by the degree
of its correspondence with the finite element calculation of KI as a function
of time .

DYNAMIC FINITE ELEMENT ANALY SIS

The procedure used is a two-dimensional ,dynamic finite element code, HONDO
[12], which was updated and modified for dynamic fracture analysis. The basic
modifications consisted of algorithms for startup and for computing dynamic stress
intensity factor, dynamic energy release rate, fracture energy, kinetic energy
and strain energy at each increment of crack advance .

In the startup procedure, the initial static stress distribution in a pre—
loaded structure prior to dynamic crack propagation is computed . This initial
stress distribution must be in complete static equilibrium prior to the initiation
of a dynamic event. The finite element breakdown and hence the initial stiffness
matrix used in this prelimi nary static analysis should be identica l to those at
the initiation or at the instant of time t=0+ in the dynamic analysis. Close
attention must be given to computational details such as matching the 2x2 Gaussian
integration points in the prelimi nary static and subsequent dynamic analyses in
order to avoid any small differences between the finite element algori thms which
will be sensed as unequilibrated residual stresses and thus set off parasitic
stress wave propagation in the dynami c analysis.

The dynamic stress intensity factor can then be canputed from the dynamic
energy release rate usi ng Freund ’s relation [13). Alternatively, the near field
dynamic stress field as derived by Ki ng et al. [14] can be used to calculate the
dynamic stress i ntensity factor directly from the numerical ly obtained stresses

I 
- — — — 
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either at the closest Gaussian integratioh point or the crack opening displace-
ments. The appropriateness of these procedures for computing a dynami c stress
intensity factor was checked by analyzing the Broberg problem [15] and is
discussed in detail in Reference [16].

Since the prima ry concern in this paper is the increase in dynamic stress
intensity factor prior to crack extension , the crack opening displacement
(COD) at the second node (not the closest node) adjacent to the crack tip node
was used for computing the dynamic stress intensity factor. While the accuracy
of KId determi nation using the computed COD of the second node adjacent to the
crack tip node was wi thin ÷5% of the theoretical value of a Broberg crack, no
comparable accuracy assessment of the authors ’ dynamic finite element algorithm
for a dynamically loaded stationa ry crack was made in the past. Thus , the Chen
problem [17], which is a centrally cracked strip with step-loaded edge tension ,
was used for this accuracy assessment . The dynamic stress intensity factors
thus obtained by the authors and those of Chen are shown in Figure 2. Although
some minor deviations between the fine—grid results and Chen ’s results are noted ,
the former are in good agreement with similar finite element results by Anderson ,
et al. [18] and Glazik [19].

TEST SPECIMENS

The two steel and one aluminum specimens ana l yzed in this paper are the
standard ASTM specimens of the 25.4 mm (1 in.) thick bend-type [7] and the 15.9
mm (5/8 in.) thick DT-type [9], respectively. The l egends in Figures 1 and 3
show the geometries of these specimens as wel l as the finite element nodal break-
downs used in the dynamic analysis. The finite element nodal breakdown used in
the first A533 B steel specimen was 156 elements and was coarser than that shown
in Figure 1. Since the load transducer on the tup was mounted away from the
impact point with the specimen , a portion of the tup was also incorporated into
the finite element model in order to reduce the ambiguity in dynamic loads trans-
mitted to the specimen [18].

The two steel specimens were machined from A533 B steel and were fatigue-
precracked to a nominal 1.5 mm (0.060 in.) crack l ength beyond the machined
notch . These specimens were instrumented wi th a 3 mmx 3 mm (1/8 in. x 1/8 in.)
strain gage near the notch tip. The strain gage output versus time was recorded
on a transient recorder and the time of fracture was assessed by the discontinuity
in strain gage traces as related to a cleavage pop-in of the specimen. Strain
gages were also placed approximately 50 m (2 in.) from the tup tip on the center
line of the tup to monitor the transient l oading condition . These steel specimens
were tested in a drop weight testing machine at the NRL [6].

The experimental results for the 15.9 mm (5/8 in.) thick aluminum 6061 DI
specimen were taken from Reference (19]. The tup confi guration and loading
machine for the test differed substantially from that of the drop weight machine
used for the steel specimens and this made it difficult to model with our two-
dimensional finite element code. As a result , the precalibrated transient tup
load as provided In Reference [20] was prescri bed directly onto the impact point
of the specimen wi thout the fi nite element model of the tup. The aluminum specimen
was instrumented wi th two 3 mx6 mm (1/8 in. x 1/4 in.) strain gages at the loc-
ations shown in Figure 3 and the transient strain signals were recorded on a
dual-beam oscilloscope. Unlike the fatigue pre-cracked steel specimens, the notch 
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in this aluminum specimen was mechanically sharpened to a tip radius of less
than 0.025 mm (0.001 in.) radius and was tested in a double -pendulum impact
machine.

RESULTS OF DYNAMIC FINITE ELEMENT ANALYS IS

The first steel specimen was tested at a temperature of 10°C (50°F). The
NDI temperature for this heat of A533-B steel was -18°C (0°F). The specimen
was impacted by a steel weight at a velocity of 2.5 rn/sec . Using the time to
fracture, an average K 1 of 2.7 MPa/1W seC’ was computed from the strain gage
record .

Figure 4 shows the tup load computed from the measured dynamic strains in
the tup during this test and the idealized tup load used in the dynamic finite
element analysis. The i dealized tup load was assumed to be uniformly distributed
across the end section of the i dealized tup shown in Figure 1. Figure 5 shows
the reasonable agreement between the measured and computed dynamic strains at
the strain gage location which is also shown in the l egend of Figure 1. The sur-
face strain was evaluated from the computed dynamic state of stress using a plane
stress assumption. The sharp drop in measured dynamic strain signifies the onset
of dynamic crack propagation which was not modeled in dynamic finite element
analysis. Thus the computed dynamic strain associated with the assumed stationary
crack continues to increase after this crack propagation .

Having verified the accuracy of the computed dynamic strain at a specific
location near the crack tip, the computed dynamic strain was then used to further
compute the dynami c stress intensity factor using Loss ’ procedure [6]. Figure 6
shows the excellent agreement between the dynamic stress intensity factor computed
directly from COD and that computed from the numericall y determined dynamic strain.
The lack of precipitous drop after dynamic fracture initiation in the two dynamic
stress intensity factors is due to the fact that the crack remai ned stationary in
the fi nite element model since the objective of this investigation was to study
only the dynamic response up to dynamic fracture initiation .

Figure 7 shows the measured and the i dealized tup loads during the DI test
at -17.7°C (0°F) for the second steel specimen . The loading rate was the same
as for the first steel specimen but fracture initiated 232 microseconds after
impact and is about half of the loading period of the firs t steel specimen.
Figure 8 shows the computed and measured dynamic strains at the strain gage
location shown in Figure 1. Figure 9 shows again the excellent agreement be-
tween the dynamic stress intensity factors computed directly from COD and by
Loss ’ procedure .

Figure 10 shows the measured and idealized tup loads during the DI test at
presumably room temperature for the 6061 aluminum specimen . This specimen was
impact loaded at a velocity of 8.6 rn/sec which was more than three times the
impact velocity for the steel specimens. Figure 11 shows the computed and measured
dynamic strains at the two strain gage locations shown in Figure 2. Note that these
strain gages were not l ocated at the geometrically similar position of the previ-
ously discussed steel specimens. The lack of strain oscillations , which is prominent
In the measured dynamic strai ns, in the computed dynamic strain at gage location 2
as well as the lack of agreement between the two dynamic strai ns at gage location
1 , are noted . Despite these discrepancies In computed and experimentally deter-
mined dynamic strains , good agreement between the dynamic stress intensity factors

- - -—.~~ -.--—-- ---———-— - .—-~



computed directly by COD and by Loss ’ procedure is noted . The dynami c stress
intensity factor was also computed by Loss ’ procedure using the numerically
determined dynamic strain at the equivalent gage location considered in the
two steel specimens , i.e. location 3 in Figure 11 . This dynamic stress i nten-
sity factor is in good agreement with the other dynamic stress intensity factors.

DISCUSSION

While excellent agreement between the measured and computed dynamic strains
in the steel specimens were noted , this comparison differed considerably in the
aluminum specimen. This discrepancy could possibly be generated by the dynamic
interaction between the compliant specimen support system of the double pendulum
impact machine which is not modeled in the finite element model . Another source
of error could be the development of significant plastic yield zone, at the blunt
notch tip, which also is not modeled in this elasto-dynamic finite element analysis.
Such elasto-plastic dynamic ana lysis should be a natura l follow-on to this paper.

In using Loss ’ procedure to determine KId in bend specimens of different pro-
portions , one should note that the stress wave velocity and nomi nally the dynamic
initiation stress intensity factor , KId, are presumably ma terial properties and
thus are invariant with specimen size. Since the plastic zone size at the crack
tip in somewhat brittle materials is proportional to ~ given by equation (1), itis also i ndependent of spec imen size. The reasonable agreement between KId obtained
directly by COD and Loss ’ procedure thus suggests that for larger A533 B steel spec-
imens tested at the same temperature , the dynamic strains for Kid calculation , regard-
less of specimen size , could be measured approximately at the same location from the
crack tip, as shown in Figure 1. For smaller specimens also tested at the same
temperature, the dynamic strains should be measured closer to the crac k tip but
sufficientl y away from the crack tip plastic zone in order to avoid superposed
nonlinea r effects in the otherwise elastic analysis.

When the notched bend specimens are used to measure higher KId at higher test
temperature , larger test specimens may be required for valid Kid data . The accom-
panying increase in plastic zone size with increasing toughness may thus require
a shift away from the crack tip of the monitoring strain gage in order to avoid
the larger plastic zone. In any event , further detailed elasto-p lastic dynamic
finite element analyses of such tougher material as well as of the smaller specimen
described above should provide the necessary information regarding the optimum
positioning of the strain gage .

CONCLUSIONS

1. LImited comparisons between measured and calcul ated dynamic strains near
the crack tip indicate that the dynamic finite element model in this paper is
a good representation of the three-point bend test under the impact test condi-
tions considered in this paper.

2. Loss ’ procedure of computing the dynamic stress intensity factor up to
dynamic fracture Intiation is an accurate and simple procedure .
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Reasona ble agreements between measure d and com pute d dynam i c stra i ns in the
vic inity of the crack tip verified the accuracy of the dynamic finite element
model . The attendant agreement between measured versus computed time-vary ing
dynamic stress intensity factors also verified , for the first time , the appli-
cability of the ASTM E-399 procedure for computing dynamic init iation fracture
toughness , 

~~ 
on the basis of local dynamic strain measurements .
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